skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dew, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Research suggests that interacting with more peers about physics course material is correlated with higher student performance. Some studies, however, have demonstrated that different topics of peer interactions may correlate with their performance in different ways, or possibly not at all. In this study, we probe both the peers with whom students interact about their physics course and the particular aspects of the course material about which they interacted in six different introductory physics courses: four lecture courses and two lab courses. Drawing on social network analysis methods, we replicate prior work demonstrating that, on average, students who interact with more peers in their physics courses have higher final course grades. Expanding on this result, we find that students discuss a wide range of aspects of course material with their peers: concepts, small-group work, assessments, lecture, and homework. We observe that in the lecture courses, interacting with peers about concepts is most strongly correlated with final course grade, with smaller correlations also arising for small-group work and homework. In the lab courses, on the other hand, small-group work is the only interaction topic that significantly correlates with final course grade. We use these findings to discuss how course structures (e.g. grading schemes and weekly course schedules) may shape student interactions and add nuance to prior work by identifying how specific types of student interactions are associated (or not) with performance. 
    more » « less
  2. Measurement uncertainty is an important topic in the undergraduate laboratory curriculum. Previous research on student thinking about experimental measurement uncertainty has focused primarily on introductory-level students’ procedural reasoning about data collection and interpretation. In this paper, we extended this prior work to study upper-level students’ thinking about sources of measurement uncertainty across experimental contexts, with a particular focus on classical and quantum mechanics contexts. We developed a survey to probe students’ thinking in the generic question “What comes to mind when you think about measurement uncertainty in [classical/quantum] mechanics?” as well as in a range of specific experimental scenarios and interpreted student responses through the lens of availability and accessibility of knowledge pieces. We found that limitations of the experimental setup were most accessible to students in classical mechanics while principles of the underlying physics theory were most accessible to students in quantum mechanics, even in a context in which this theory was not relevant. We recommend that future research probe which sources of uncertainty experts believe are relevant in which contexts and how instruction in both classical and quantum contexts can help students draw on appropriate sources of uncertainty in classical and quantum experiments. 
    more » « less
  3. Frank, Brian W.; Jones, Dyan L.; Ryan, Qing X. (Ed.)
    While understanding laboratory equipment is an important learning goal of physics laboratory (lab) instruction, previous studies have found inequities as to who gets to use equipment in in-person lab classes. With the transition to remote learning during the COVID-19 pandemic, class dynamics changed and the effects on equipment usage remain unclear. As part of a larger effort to make intro physics labs more equitable, we investigated student equipment usage based on gender and race in two introductory physics lab courses, one taught in-person and one taught remotely. We found inequities between men and women for in-person instruction, replicating previous work with a new student population. In contrast, we found that remote instruction created a more gender equitable learning environment, albeit with one student typically in charge of the equipment per class session. When we looked at equipment handling based on student race, we found no inequities in either format. These results suggest that changes should be made in introductory labs to create a more gender equitable learning environment and that some aspects of remote labs could help make these labs more equitable. 
    more » « less